1,832 research outputs found

    Time Driven Priority Router Implementation and First Experiments

    Get PDF
    This paper reports on the implementation of Time-Driven Priority (TDP) scheduling on a FreeBSD platform. This work is part of a TDP prototyping and demonstration project aimed at showing the implications of TDP deployment in packet-switched networks, especially benefits for real-time applications. This paper focuses on practical aspects related to the implementation of the technology on a Personal Computer (PC)-based router and presents the experimental results obtained on a testbed network. The basic building blocks of a TDP router are described and implementation choices are discussed. The relevant results achieved and here presented can be categorized into two types: qualitative results, including the successful integration of all needed blocks and the insight obtained on the complexity related to the implementation of a TDP router, and quantitative ones, including measures of achievable network utilization and of jitter experienced on a fully-loaded TDP network. The outcome demonstrates the effectiveness of the presented implementation while confirming TDP points of strengt

    Optical mapping of neuronal activity during seizures in zebrafish

    Get PDF
    Mapping neuronal activity during the onset and propagation of epileptic seizures can provide a better understanding of the mechanisms underlying this pathology and improve our approaches to the development of new drugs. Recently, zebrafish has become an important model for studying epilepsy both in basic research and in drug discovery. Here, we employed a transgenic line with pan-neuronal expression of the genetically-encoded calcium indicator GCaMP6s to measure neuronal activity in zebrafish larvae during seizures induced by pentylenetretrazole (PTZ). With this approach, we mapped neuronal activity in different areas of the larval brain, demonstrating the high sensitivity of this method to different levels of alteration, as induced by increasing PTZ concentrations, and the rescuing effect of an anti-epileptic drug. We also present simultaneous measurements of brain and locomotor activity, as well as a high-throughput assay, demonstrating that GCaMP measurements can complement behavioural assays for the detection of subclinical epileptic seizures, thus enabling future investigations on human hypomorphic mutations and more effective drug screening methods. Notably, the methodology described here can be easily applied to the study of many human neuropathologies modelled in zebrafish, allowing a simple and yet detailed investigation of brain activity alterations associated with the pathological phenotype

    Introducing Network-Aware Scheduling Capabilities in OpenStack

    Get PDF
    This paper motivates and describes the introduction of network-aware scheduling capabilities in OpenStack, the open-source reference framework for creating public and private clouds. This feature represents the key for properly supporting the Network Function Virtualization paradigm, particularly when the physical infrastructure features servers distributed across a geographical region. This paper also describes the modifications required to the compute and network components, Nova and Neutron, and the integration of a network controller into the cloud infrastructure, which is in charge of feeding the network-aware scheduler with the actual network topology

    A novel approach for security function graph configuration and deployment

    Get PDF
    Network virtualization increased the versatility in enforcing security protection, by easing the development of new security function implementations. However, the drawback of this opportunity is that a security provider, in charge of configuring and deploying a security function graph, has to choose the best virtual security functions among a pool so large that makes manual decisions unfeasible. In light of this problem, the paper proposes a novel approach for synthesizing virtual security services by introducing the functionality abstraction. This new level of abstraction allows to work in the virtual level without considering the different function implementations, with the objective to postpone the function selection jointly with the deployment, after the configuration of the virtual graph. This novelty enables to optimize the function selection when the pool of available functions is very large. A framework supporting this approach has been implemented and it showed adequate scalability for the requirements of modern virtual networks

    Automated optimal firewall orchestration and configuration in virtualized networks

    Get PDF
    Emerging technologies such as Software-Defined Networking and Network Functions Virtualization are making the definition and configuration of network services more dynamic, thus making automatic approaches that can replace manual and error-prone tasks more feasible. In view of these considerations, this paper proposes a novel methodology to automatically compute the optimal allocation scheme and configuration of virtual firewalls within a user-defined network service graph subject to a corresponding set of security requirements. The presented framework adopts a formal approach based on the solution of a weighted partial MaxSMT problem, which also provides good confidence about the solution correctness. A prototype implementation of the proposed approach based on the z3 solver has been used for validation, showing the feasibility of the approach for problem instances requiring tens of virtual firewalls and similar numbers of security requirements

    An Efficient Data Exchange Algorithm for Chained Network Functions

    Get PDF
    In-network function chaining often involves the deployment of multiple applications into a single, possibly multi-tenant, middlebox. This approach has gained much interest since new network paradigms, such as Software Defined Networking (SDN) and Network Function Virtualization (NFV), have been proposed to virtualize resources as well as network functions. In this scenario, it is very common to move data (e.g., packets) from an application to another by means of a switching module that is in charge of chaining network functions in the correct order, also ensuring an adequate level of isolation between any two virtualized components. With this purpose in mind, this paper proposes an efficient algorithm to handle the communication between the internal soft-switch and the heterogeneous network functions that are executed on the same server. Our proposal is designed with the aim of dealing with high speed packet processing, hence an extensive performance evaluation is also provided to prove the goodness of our solution in this context

    Modellazione fisica della glottide e inversione acustico-articolatoria

    Get PDF
    Questo lavoro presenta una tecnica per la stima del modello a due masse della corda vocale a partire da un datoflusso glottale tempo-variante. Il modello a due masse `e specificato da un certo numero di parametri meccanici di bassolivello, calcolati in funzione di quattro parametri articolatori (livelli di attivazione di tre muscoli laringali e pressione subglottale). Le forme d'onda del flusso glottale, sintetizzate dal modello, sono caratterizzate da un insieme di parametri acustici per la quantificazione della sorgente vocale. Misurando un flusso glottale di riferimento viene data una sequenza di parametri acustici e, impiegando la programmazione dinamica e l'interpolazione con reti RBF (Radial Basis Function Networks), si derivano i parametri di attivazione muscolare che portano alla risintesi del flusso glottale di partenza
    corecore